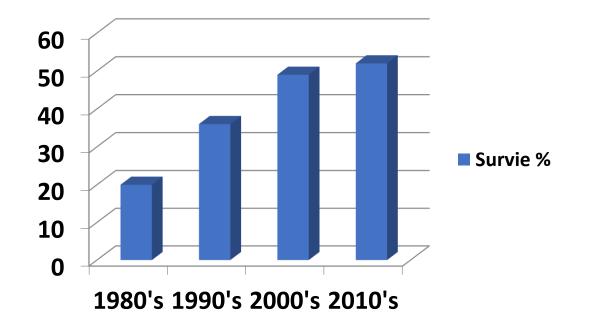
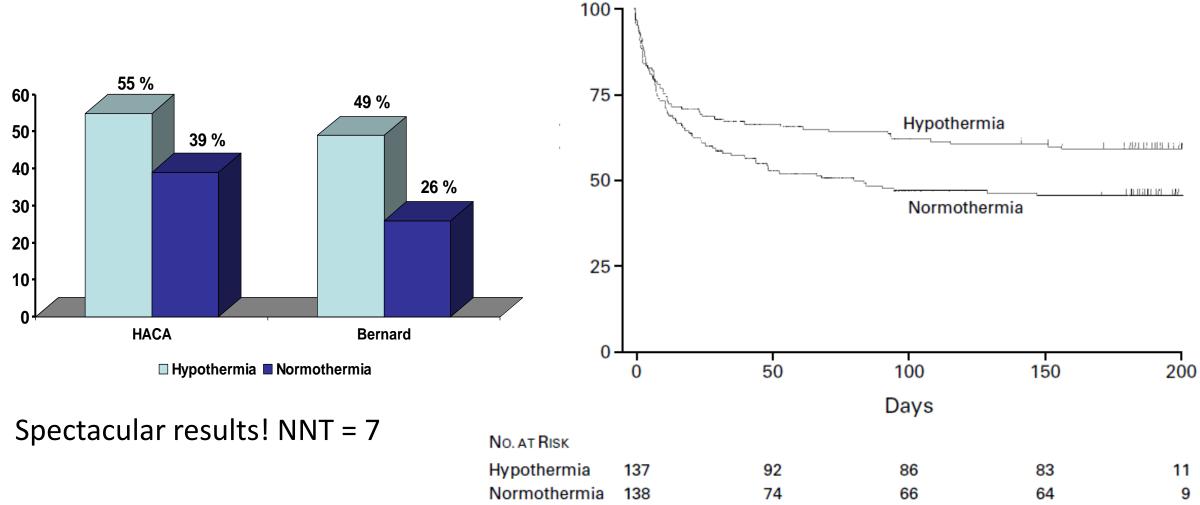
Clinical research in post cardiac arrest care

Journée de la Recherche Médicale et Translationnelle - 16th October 2024, CHL-Luxembourg

Pascal STAMMET, MD, PhD


Clinical Affiliate Professor University of Luxembourg Intensive Care Department Centre Hospitalier de Luxembourg



Where do we stand now?

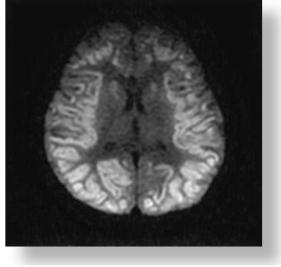
- Only approx. 20% of OHCA patients survive until the hospital
- Historically, very low survival: « futile » care
- Over the last 2 decades: significant improvement of outcome

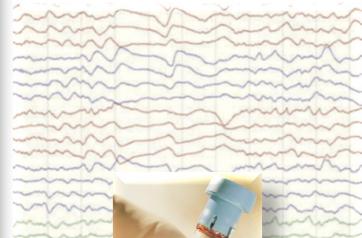
The magic bullet? HACA and Bernard trial

Bernard et al and HACA trial, NEJM 2002

Collateral benefit!

- Implementation of TTM (« hypothermia ») into 2005 guidelines
- CA care become not futile anymore!
- Protocols in ICUs for CA care save lives




Table 1 Univariate analysis of prognostic factors and outcome data for patients admitted to ICU of Ulleval University Hospital in the control (1996–1998) or intervention (2003–2005) periods, presented as absolute numbers (percentage) or median values with interquartile range

	Control period (n = 58)	Intervention period (<i>n</i> = 61)	OR (95% CI)	p-Value
Male	46 (79)	50 (82)	1.2 (0.5, 2.9)	0.89
Age < 70	28 (48)	43 (71)	2.6 (1.2, 5.4)	0.022
Witnessed	55 (95)	60 (98)	3.3 (0.33, 32.4)	0.36
Bystander CPR	43 (74)	43 (71)	0.8 (0.4, 1.9)	0.81
Initial VF	49 (84)	55 (90)	1.7 (0.6, 5.1)	0.51
Ambulance response time (min)	6 (4–9)	6 (4-8)		0.70 ^a
Time to ROSC (min)	18 (13-22)	18 (10-27)		0.98ª
Comatose on admission	52 (90)	52 (85)	1.2 (0.5, 2.8)	0.65
Myocardial infarction	33 (57)	36 (59)	1.1 (0.5, 2.3)	0.82
Mechanical ventilation (days)	2 (1-5)	2 (1-5)		0.70 ^a
Stay at ICU (days)	4 (3-6)	5 (2-8)		0.4
Survival to discharge	18 (31)	34 (56)	2.80 (1.32, 5.93)	0.007
Favourable outcome (CPC $1-2$)	15 (26)	34 (56)	3.61 (1.66, 7.84)	0.001
1-Year survival	15 (26)	34 (56)	3.61 (1.66, 7.84)	0.001

Protocolized post cardiac arrest care: this is what we talk about...

Some cardiac arrest research on prognostication and outcome

Clinical paper

Bispectral index (BIS) helps predicting bad neurological outcome in comatose survivors after cardiac arrest and induced therapeutic hypothermia^{$\pm,\pm\pm$}

Pascal Stammet^{*,1}, Christophe Werer¹, Luc Mertens¹, Christiane Lorang¹, Margaret Hemmer¹

Circulating microRNAs after cardiac arrest

Journal of the American College of Cardiology © 2013 by the American College of Cardiology	Foundation
Published by Elsevier Inc.	

Vol. 62, No. 9, 2013 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2013.04.039

Biomarkers

Modeling Serum Level of S100 β and Bispectral Index to Predict Outcome After Cardiac Arrest

Pascal Stammet, MD, * Daniel R. Wagner, MD, PHD, †‡ Georges Gilson, PHD, § Yvan Devaux, PHD‡ JOURAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

Neuron-Specific Enolase as a Predictor of Death or Poor Neurological Outcome After Out-of-Hospital Cardiac Arrest and Targeted Temperature Management at 33°C and 36°C

Pascal Stammet, MD,* Olivier Collignon, PHD,† Christian Hassager, MD, DMSC,‡ Matthew P. Wise, MD, DPHIL,§ Jan Hovdenes, MD, PHD,|| Anders Åneman, MD, PHD,¶ Janneke Horn, MD, PHD,# Yvan Devaux, PHD.** David Erlinge, MD, PHD,†† Jesper Kjaergaard, MD, DMSc,‡ Yvan Gasche, MD,†† Michael Wanscher, MD, PHD,§§ Tobias Cronberg, MD, PHD,||| Hans Friberg, MD, PHD,¶¶ Jørn Wetterslev, MD, PHD,#Tommaso Pellis, MD,*** Michael Kuiper, MD, PHD,††† Georges Gilson, PHD,‡†‡ Niklas Nielsen, MD, PHD,§§§ and the TTM-Trial Investigators

Clinical paper

Late heartbeat-evoked potentials are associated with survival after cardiac arrest $\stackrel{\star}{\sim}$

ORIGINAL

CrossMark

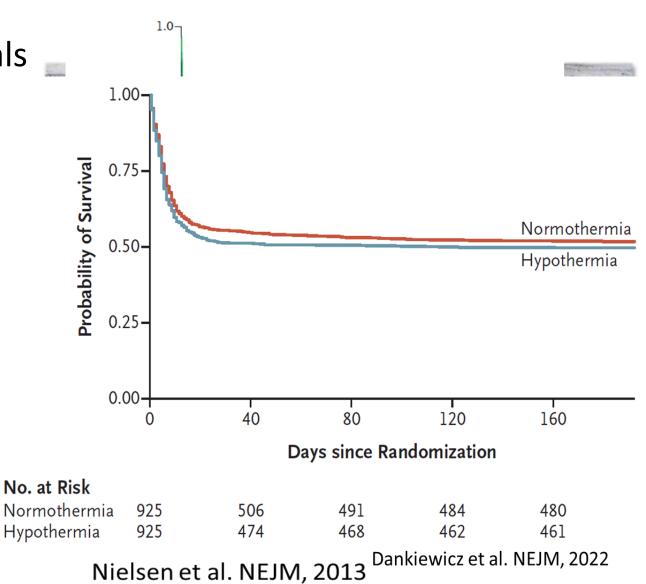
Quantitative versus standard pupillary light reflex for early prognostication in comatose cardiac arrest patients: an international prospective multicenter double-blinded study JAMA Neurology | Original Investigation

Serum Neurofilament Light Chain for Prognosis of Outcome After Cardiac Arrest

RESEARCH

Open Access

Predicting neurological outcome after out-of-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm


Peder Andersson^{1,16*}, Jesper Johnsson², Ola Björnsson^{3,4}, Tobias Cronberg⁵, Christian Hassager⁶, Henrik Zetterberg^{7,8,9,10}, Pascal Stammet¹¹, Johan Undén¹², Jesper Kjaergaard⁶, Hans Friberg¹³, Kaj Blennow^{7,8}, Gisela Lilja⁵, Matt P. Wise¹⁴, Josef Dankiewicz¹⁵, Niklas Nielsen^{2†} and Attila Frigyesi^{1,4†}

The challenges of cardiac arrest

- Methodological flaws of initial trials (no true randomisation, small sample sizes, statistical significance at the limit, no clear separation betwee groups regading temperature, withdrawal criteria no reported, ...)
- Need for new trials
- TTM(1) trial : 33°C vs 36°C with a strict separation of temperature groups, clear withdrawal criteria, blinded outcome assessment
- TTM2: hypothermia (33°C) vs normothermia (≤ 37.8°C)

What do the guidelines 2021 tell us?

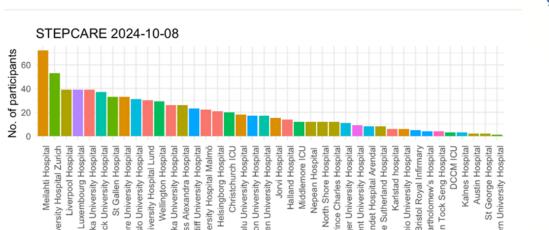
- Temperature management: In patients who remain comatose after cardiac arrest, continuous monitoring of core temperature should be practiced, and active measures should be undertaken to prevent fever (defined as >37.7 °C) for at least 72 hours.
- Hemodynamics : Avoid hypotension (<65 mmHg). Target MAP to achieve adequate urine output (>0.5 mL/kg/h) and normal or decreasing lactate.
- Sedation: Use short acting sedatives and opioid
- And not much more...

<u>Sedation, TEmperature and Pressure after</u> <u>Cardiac Arrest and RE</u>suscitation

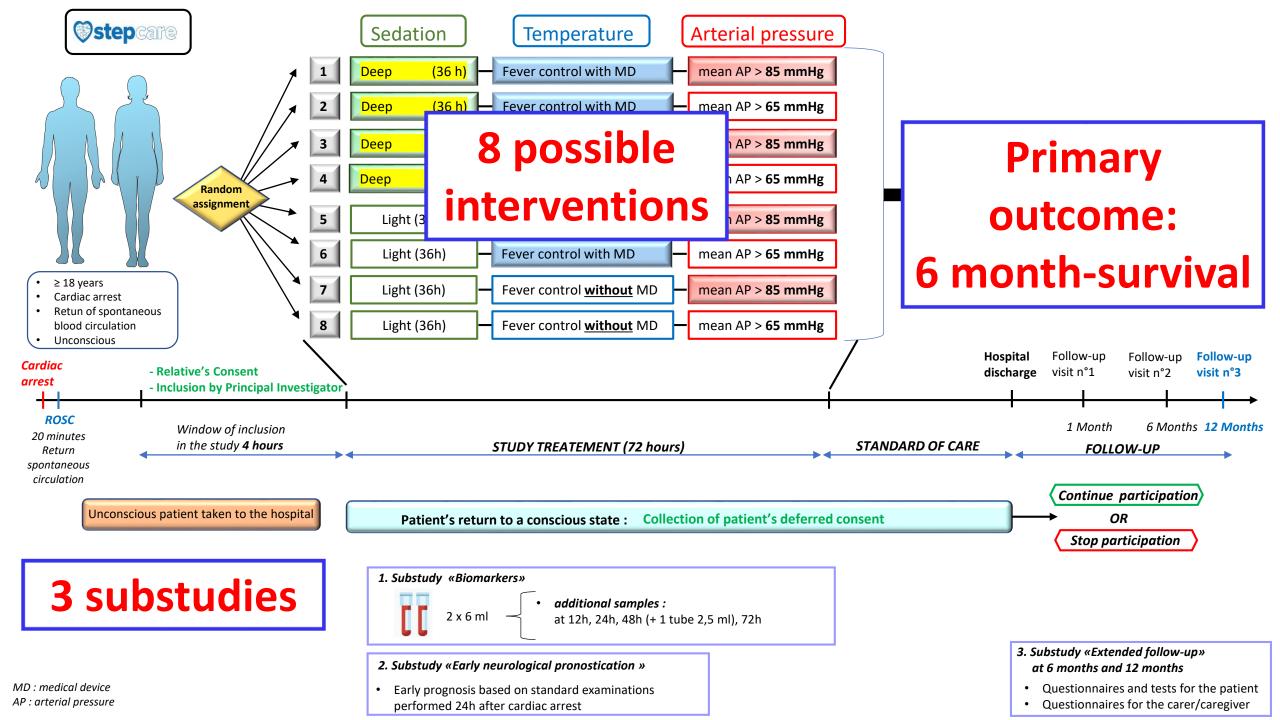
Main research questions

1. Is continuous **deep sedation** for 36 hours beneficial compared to minimal sedation? (SED-CARE)

2. Is **fever management** with a feedback-controlled device for 72 hours beneficial compared to standard fever care? (TEMP-CARE)


3. Is a mean **arterial pressure target of >85mmHg** for 72 hours beneficial compared to >65mmHg? (MAP-CARE)

Inclusion criteria: adult, non traumatic out-of-hospital-cardiac arrest with stable ROSC for at least 20 min, unconscious or intubated


Exclusion criteria: ECMO, pregnancy, neurological cause, randomized before

- 2x2x2 factorial design, multi center, randomized clinical trial
- 3500 patients
- Started end of 2023
- CHL started 11/2023
- 795 patients included

STEPCARE substudies and perspectives

- Follow-up substudy
 - Follow-up of patients at 1, 6 and 12months
 - Including caregivers and partners of CA patients
- Early prognostication sub-study
 - Can we already predict outcome at 24 hours (actual guidelines >72hours)?
- Biomarker substudy
 - 12, 24, 48 and 72 hours blood sampling for « biomarkers »
 - in STEPCARE, IBBL is the biobank (collabration started in 2010 with the TTM(1) trial, continued for TTM2 and now STEPACRE)
- Close collaboration ICU of CHL with Cardiovascular Research Unit of LIH (Dr Yvan Devaux) since more than 15 years

Don't forget, today is October 16th!

JIDDEREEN op dëser Welt – kann e Liewe **RETTEN**-

16 OKTOBER - World Restart a Heart Day

En Häerz an 3 einfache Schrött eröm un d'Schloe bréngen!

Thank you for your attention! And don't forget to push hard and fast!